Foundations of Optimizations

<u>References</u>

- Optimization: insights and Application
 J.Brinkhuis and V.Tikhomirov
 Princeton University Press: 2005
- Foundations of Optimization:
 Osman Guler
 Springer- 2010
- Practical Methods of Optimization: R.Flectcher John wiley, 1987
- Numerical Optimization
 J.Nocedal & Stephen.J.Wright
 Springer

FAQS in Optimization

- Are most optimization problems solvable exactly?
 General Rule: optimization problems are in general not solvable exactly.
- What does optimization algorithms return to us? They return a point generated by an iterative process and we choose the point which first satisfies a pre-set stopping criteria.
- 3. What is the difference between local and global convergence of optimization algorithms.

Local convergence: If $\{x_k\}$ is a sequence of iterates generated by an algorithms, then x_k will converge to a local solution if x_o the initial point or starting point is near the solution point. (Newton's method has local convergence) Global Convergence: Start from anywhere.....

- 4. Important Algorithm for unconstrained optimization
 - A. Newton's Method
 - B. Quasi-Newton Methods
 - C. Trust-region Methods
 - D. Conjugate gradients Method
 - E. Derivative free techniques
- Why are convex functions and convex sets important in optimization
 If we minimize a convex function over a convex set every minimum is a global
 minimum.
- Are convex functions differentiable?
 No, they are differentiable everywhere except over a set of measure zero. (See the discussion on sub gradients in the lecture)
- 7. What are the important algorithms for solving constrained optimization problems?
 - A) Simplex method for linear programming problems.
 - B) Interior point methods for convex programming problems (e.g. karmarkar's algorithm)
 - C) Penalty Function method
 - D) Sequential Quadratic programming techniques.
 - E) Sub gradients methods for convex optimization.
- 8. Current hot research areas in optimization
 - A) Polynomial Optimization & Semi definite Programming
 - B) Algebraic techniques in discrete optimization
 - C) Variantional Analysis
 - D) MPEC Problems, Bi-level problems and Variational in equality
 - E) Stochastic Optimization
 - F) Vector optimization